Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Scattering theory of higher order topological phases (2412.15333v1)

Published 19 Dec 2024 in cond-mat.mes-hall

Abstract: The surface states of intrinsic higher order topological phases are protected by the spatial symmetries of a finite sample. This property makes the existing scattering theory of topological invariants inapplicable because the scattering geometry is either incompatible with the symmetry or does not probe the bulk topology. We resolve this obstacle by using a symmetric scattering geometry that probes transport from the inside to the outside of the sample. We demonstrate that the intrinsic higher order topology is captured by the flux dependence of the reflection matrix. Our finding follows from identifying the spectral flow of a flux line as a signature of higher order topology. We show how this scattering approach applies to several examples of higher order topological insulators and superconductors. Our theory provides an alternative approach for proving bulk--edge correspondence in intrinsic higher order topological phases, especially in presence of disorder.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We're still in the process of identifying open problems mentioned in this paper. Please check back in a few minutes.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 18 likes.

Upgrade to Pro to view all of the tweets about this paper: