Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Structured Extraction of Real World Medical Knowledge using LLMs for Summarization and Search (2412.15256v1)

Published 16 Dec 2024 in cs.CL, cs.AI, and cs.LG

Abstract: Creation and curation of knowledge graphs can accelerate disease discovery and analysis in real-world data. While disease ontologies aid in biological data annotation, codified categories (SNOMED-CT, ICD10, CPT) may not capture patient condition nuances or rare diseases. Multiple disease definitions across data sources complicate ontology mapping and disease clustering. We propose creating patient knowledge graphs using LLM extraction techniques, allowing data extraction via natural language rather than rigid ontological hierarchies. Our method maps to existing ontologies (MeSH, SNOMED-CT, RxNORM, HPO) to ground extracted entities. Using a large ambulatory care EHR database with 33.6M patients, we demonstrate our method through the patient search for Dravet syndrome, which received ICD10 recognition in October 2020. We describe our construction of patient-specific knowledge graphs and symptom-based patient searches. Using confirmed Dravet syndrome ICD10 codes as ground truth, we employ LLM-based entity extraction to characterize patients in grounded ontologies. We then apply this method to identify Beta-propeller protein-associated neurodegeneration (BPAN) patients, demonstrating real-world discovery where no ground truth exists.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube