Bochvar algebras: A categorical equivalence and the generated variety (2412.14911v1)
Abstract: The proper quasivariety BCA of Bochvar algebras, which serves as the equivalent algebraic semantics of Bochvar's external logic, was introduced by Finn and Grigolia in and extensively studied in a recent work by two of these authors. In this paper, we show that the algebraic category of Bochvar algebras is equivalent to a category whose objects are pairs consisting of a Boolean algebra and a meet-subsemilattice (with unit) of the same. Furthermore, we provide an axiomatisation of the variety $V(BCA) generated by Bochvar algebras. Finally, we axiomatise the join of Boolean algebras and semilattices within the lattice of subvarieties of V(BCA).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.