Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Semiparametric Joint Modeling to Estimate the Treatment Effect on a Longitudinal Surrogate with Application to Chronic Kidney Disease Trials (2412.14124v1)

Published 18 Dec 2024 in stat.ME

Abstract: In clinical trials where long follow-up is required to measure the primary outcome of interest, there is substantial interest in using an accepted surrogate outcome that can be measured earlier in time or with less cost to estimate a treatment effect. For example, in clinical trials of chronic kidney disease (CKD), the effect of a treatment is often demonstrated on a surrogate outcome, the longitudinal trajectory of glomerular filtration rate (GFR). However, estimating the effect of a treatment on the GFR trajectory is complicated by the fact that GFR measurement can be terminated by the occurrence of a terminal event, such as death or kidney failure. Thus, to estimate this effect, one must consider both the longitudinal outcome of GFR, and the terminal event process. Available estimation methods either impose restrictive parametric assumptions with corresponding maximum likelihood estimation that is computationintensive or other assumptions not appropriate for the GFR setting. In this paper, we build a semiparametric framework to jointly model the longitudinal outcome and the terminal event, where the model for the longitudinal outcome is semiparametric, and the relationship between the longitudinal outcome and the terminal event is nonparametric. The proposed semiparametric joint model is flexible and can be extended to include nonlinear trajectory of the longitudinal outcome easily. An estimating equation based method is proposed to estimate the treatment effect on the slope of the longitudinal outcome (e.g., GFR slope). Theoretical properties of the proposed estimators are derived. Finite sample performance of the proposed method is evaluated through simulation studies. We illustrate the proposed method using data from the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) trail to examine the effect of Losartan on GFR slope.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.