Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Projective purification of correlated reduced density matrices (2412.13566v1)

Published 18 Dec 2024 in quant-ph and cond-mat.str-el

Abstract: In the search for accurate approximate solutions of the many-body Schr\"odinger equation, reduced density matrices play an important role, as they allow to formulate approximate methods with polynomial scaling in the number of particles. However, these methods frequently encounter the issue of $N$-representability, whereby in self-consistent applications of the methods, the reduced density matrices become unphysical. A number of algorithms have been proposed in the past to restore a given set of $N$-representability conditions once the reduced density matrices become defective. However, these purification algorithms have either ignored symmetries of the Hamiltonian related to conserved quantities, or have not incorporated them in an efficient way, thereby modifying the reduced density matrix to a greater extent than is necessary. In this paper, we present an algorithm capable of efficiently performing all of the following tasks in the least invasive manner: restoring a given set of $N$-representability conditions, maintaining contraction consistency between successive orders of reduced density matrices, and preserving all conserved quantities. We demonstrate the superiority of the present purification algorithm over previous ones in the context of the time-dependent two-particle reduced density matrix method applied to the quench dynamics of the Fermi-Hubbard model.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.