Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Equivariant and Invariant Parametrized Topological Complexity (2412.12921v3)

Published 17 Dec 2024 in math.AT

Abstract: For a $G$-equivariant fibration $p \colon E\to B$, we introduce and study the invariant analogue of Cohen, Farber and Weinberger's parametrized topological complexity, called the invariant parametrized topological complexity. This notion generalizes the invariant topological complexity introduced by Lubawski and Marzantowicz. We establish the equivariant fibrewise homotopy invariance of this notion and derive several bounds, including a cohomological lower bound and a dimensional upper bound. Additionally, we compare invariant parametrized topological complexity with other well-known invariants. When $G$ is a compact Lie group acting freely on $E$, we show that the invariant parametrized topological complexity of the $G$-fibration $p \colon E\to B$ coincides with the parametrized topological complexity of the induced fibration $\overline{p} \colon \overline{E} \to \overline{B}$ between the orbit spaces. Finally, we compute the invariant parametrized topological complexity of equivariant Fadell-Neuwirth fibrations, which measures the complexity of motion planning in presence of obstacles having unknown positions such that the order in which they are placed is irrelevant. Apart from this, we establish several bounds, including a cohomological lower bound, an equivariant homotopy dimension-connectivity upper bound and various product inequalities for the equivariant sectional category. Applying them, we obtain some interesting results for equivariant and invariant parametrized topological complexity of a $G$-fibration.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube