Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 208 tok/s Pro
2000 character limit reached

Reservoir Computing Generalized (2412.12104v1)

Published 23 Nov 2024 in nlin.CD and cs.LG

Abstract: A physical neural network (PNN) has both the strong potential to solve machine learning tasks and intrinsic physical properties, such as high-speed computation and energy efficiency. Reservoir computing (RC) is an excellent framework for implementing an information processing system with a dynamical system by attaching a trained readout, thus accelerating the wide use of unconventional materials for a PNN. However, RC requires the dynamics to reproducibly respond to input sequence, which limits the type of substance available for building information processors. Here we propose a novel framework called generalized reservoir computing (GRC) by turning this requirement on its head, making conventional RC a special case. Using substances that do not respond the same to identical inputs (e.g., a real spin-torque oscillator), we propose mechanisms aimed at obtaining a reliable output and show that processed inputs in the unconventional substance are retrievable. Finally, we demonstrate that, based on our framework, spatiotemporal chaos, which is thought to be unusable as a computational resource, can be used to emulate complex nonlinear dynamics, including large scale spatiotemporal chaos. Overall, our framework removes the limitation to building an information processing device and opens a path to constructing a computational system using a wider variety of physical dynamics.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube