Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
41 tokens/sec
GPT-5 Medium
23 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
96 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

Formal Quality Measures for Predictors in Markov Decision Processes (2412.11754v1)

Published 16 Dec 2024 in cs.LO

Abstract: In adaptive systems, predictors are used to anticipate changes in the systems state or behavior that may require system adaption, e.g., changing its configuration or adjusting resource allocation. Therefore, the quality of predictors is crucial for the overall reliability and performance of the system under control. This paper studies predictors in systems exhibiting probabilistic and non-deterministic behavior modelled as Markov decision processes (MDPs). Main contributions are the introduction of quantitative notions that measure the effectiveness of predictors in terms of their average capability to predict the occurrence of failures or other undesired system behaviors. The average is taken over all memoryless policies. We study two classes of such notions. One class is inspired by concepts that have been introduced in statistical analysis to explain the impact of features on the decisions of binary classifiers (such as precision, recall, f-score). Second, we study a measure that borrows ideas from recent work on probability-raising causality in MDPs and determines the quality of a predictor by the fraction of memoryless policies under which (the set of states in) the predictor is a probability-raising cause for the considered failure scenario.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube