Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Does Optimal Control Always Benefit from Better Prediction? An Analysis Framework for Predictive Optimal Control (2405.02809v1)

Published 5 May 2024 in eess.SY and cs.SY

Abstract: The prediction + optimal control'' scheme has shown good performance in many applications of automotive, traffic, robot, and building control. In practice, the prediction results are simply considered correct in the optimal control design process. However, in reality, these predictions may never be perfect. Under a conventional stochastic optimal control formulation, it is difficult to answer questions likewhat if the predictions are wrong''. This paper presents an analysis framework for predictive optimal control where the subjective belief about the future is no longer considered perfect. A novel concept called the hidden prediction state is proposed to establish connections among the predictors, the subjective beliefs, the control policies and the objective control performance. Based on this framework, the predictor evaluation problem is analyzed. Three commonly-used predictor evaluation measures, including the mean squared error, the regret and the log-likelihood, are considered. It is shown that neither using the mean square error nor using the likelihood can guarantee a monotonic relationship between the predictor error and the optimal control cost. To guarantee control cost improvement, it is suggested the predictor should be evaluated with the control performance, e.g., using the optimal control cost or the regret to evaluate predictors. Numerical examples and examples from automotive applications with real-world driving data are provided to illustrate the ideas and the results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. doi:10/f7vxn2.
  2. doi:10.1109/TCST.2017.2762288.
  3. doi:10.1109/JAS.2019.1911471.
  4. doi:10.1177/0278364919859436.
  5. doi:https://doi.org/10.1016/j.arcontrol.2020.09.001.
  6. doi:10.1109/ITSC55140.2022.9922564.
  7. doi:10.1109/TIV.2017.2788208.
  8. doi:10.1109/AMC.1996.509370.
  9. arXiv:2006.07569, doi:10.23919/acc53348.2022.9867421. URL http://arxiv.org/abs/2006.07569
  10. doi:10/brxgpc.
  11. doi:https://doi.org/10.1016/j.automatica.2023.111101. URL https://www.sciencedirect.com/science/article/pii/S0005109823002613
  12. doi:10.1109/TASE.2021.3137769. URL https://ieeexplore.ieee.org/document/9675285/
  13. doi:https://doi.org/10.1016/j.egyai.2023.100255. URL https://www.sciencedirect.com/science/article/pii/S2666546823000277
  14. doi:https://doi.org/10.1016/j.egyr.2023.01.013. URL https://www.sciencedirect.com/science/article/pii/S2352484723000136
  15. doi:https://doi.org/10.1016/j.ejor.2022.07.040. URL https://www.sciencedirect.com/science/article/pii/S0377221722006087
  16. doi:10.1109/TCST.2021.3091887. URL https://ieeexplore.ieee.org/document/9478061/
  17. doi:10.1038/s42254-019-0062-2.
  18. doi:10.1002/1099-131x(200007)19:4<235::aid-for772>3.0.co;2-l.
  19. doi:10.1146/annurev-statistics-062713-085831.
  20. doi:10.1016/j.ijar.2019.03.009.
  21. arXiv:2012.03854, doi:10.1016/j.ijforecast.2021.11.001.
  22. doi:10.1109/MCS.2016.2602087.
  23. doi:10/gg4z5d.
  24. doi:10.1609/aaai.v34i02.5521.
  25. arXiv:1710.08005, doi:10.1287/mnsc.2020.3922. URL http://arxiv.org/abs/1710.08005
  26. doi:10.1609/aaai.v33i01.33011658.
  27. doi:10.1016/j.automatica.2016.08.008.
  28. doi:10.23919/ACC50511.2021.9483341.
  29. doi:http://doi.org/10.21949/1504477.
  30. doi:10.1109/tcst.2017.2768042.

Summary

We haven't generated a summary for this paper yet.