Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
60 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Strategy Iteration for Mean Payoff in Markov Decision Processes (1707.01859v2)

Published 6 Jul 2017 in cs.PF and cs.LO

Abstract: Markov decision processes (MDPs) are standard models for probabilistic systems with non-deterministic behaviours. Mean payoff (or long-run average reward) provides a mathematically elegant formalism to express performance related properties. Strategy iteration is one of the solution techniques applicable in this context. While in many other contexts it is the technique of choice due to advantages over e.g. value iteration, such as precision or possibility of domain-knowledge-aware initialization, it is rarely used for MDPs, since there it scales worse than value iteration. We provide several techniques that speed up strategy iteration by orders of magnitude for many MDPs, eliminating the performance disadvantage while preserving all its advantages.

Citations (13)

Summary

We haven't generated a summary for this paper yet.