Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multivariate Distributions in Non-Stationary Complex Systems II: Empirical Results for Correlated Stock Markets

Published 16 Dec 2024 in q-fin.ST | (2412.11602v1)

Abstract: Multivariate Distributions are needed to capture the correlation structure of complex systems. In previous works, we developed a Random Matrix Model for such correlated multivariate joint probability density functions that accounts for the non-stationarity typically found in complex systems. Here, we apply these results to the returns measured in correlated stock markets. Only the knowledge of the multivariate return distributions allows for a full-fledged risk assessment. We analyze intraday data of 479 US stocks included in the S&P500 index during the trading year of 2014. We focus particularly on the tails which are algebraic and heavy. The non-stationary fluctuations of the correlations make the tails heavier. With the few-parameter formulae of our Random Matrix Model we can describe and quantify how the empirical distributions change for varying time resolution and in the presence of non-stationarity.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.