Papers
Topics
Authors
Recent
2000 character limit reached

A Rellich type theorem for discrete Maxwell operators (2412.11568v1)

Published 16 Dec 2024 in math.AP

Abstract: We study the Rellich type theorem (RT) for the Maxwell operator $\hat HD=\hat D\hat H_0$ on ${\bf Z}3$ with constant anisotropic medium, i.e. the permittivity and permeability of which are non-scalar constant diagonal matrices. We also study the unique continuation theorem for the perturbed Maxwell operator $\hat H{D_p}=\hat {D}_p\hat H_0$ on ${\bf Z}3$ where the permittivity and permeability are locally perturbed from a constant matrix on a compact set in ${\bf Z}3$. It then implies that, if $\hat HD- \lambda$ satisfies (RT), then all distributions $\hat u$ in Besov space $\mathcal B_0{\ast}({\bf Z}3;{\bf C}3)$ satisfying the equation $(\hat H{D_p} - \lambda) \hat u = 0$ outside a compact set vanish near infinity.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.