Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Solitary wave formation in the compressible Euler equations (2412.11086v1)

Published 15 Dec 2024 in math.AP, nlin.PS, and physics.flu-dyn

Abstract: We study the behavior of perturbations in a compressible one-dimensional inviscid gas with an ambient state consisting of constant pressure and periodically-varying density. We show through asymptotic analysis that long-wavelength perturbations approximately obey a system of dispersive nonlinear wave equations. Computational experiments demonstrate that solutions of the 1D Euler equations agree well with this dispersive model, with solutions consisting mainly of solitary waves. Shock formation seems to be avoided for moderate-amplitude initial data, while shock formation occurs for larger initial data. We investigate the threshold for transition between these behaviors, validating a previously-proposed criterion based on further computational experiments. These results support the existence of large-time non-breaking solutions to the 1D compressible Euler equations, as hypothesized in previous works.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 8 likes.

Upgrade to Pro to view all of the tweets about this paper: