Papers
Topics
Authors
Recent
2000 character limit reached

Semantic Steganography: A Framework for Robust and High-Capacity Information Hiding using Large Language Models (2412.11043v1)

Published 15 Dec 2024 in cs.CR

Abstract: In the era of LLMs, generative linguistic steganography has become a prevalent technique for hiding information within model-generated texts. However, traditional steganography methods struggle to effectively align steganographic texts with original model-generated texts due to the lower entropy of the predicted probability distribution of LLMs. This results in a decrease in embedding capacity and poses challenges for decoding stegos in real-world communication channels. To address these challenges, we propose a semantic steganography framework based on LLMs, which construct a semantic space and map secret messages onto this space using ontology-entity trees. This framework offers robustness and reliability for transmission in complex channels, as well as resistance to text rendering and word blocking. Additionally, the stegos generated by our framework are indistinguishable from the covers and achieve a higher embedding capacity compared to state-of-the-art steganography methods, while producing higher quality stegos.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.