Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Do LLMs Act as Repositories of Causal Knowledge? (2412.10635v1)

Published 14 Dec 2024 in econ.EM

Abstract: LLMs offer the potential to automate a large number of tasks that previously have not been possible to automate, including some in science. There is considerable interest in whether LLMs can automate the process of causal inference by providing the information about causal links necessary to build a structural model. We use the case of confounding in the Coronary Drug Project (CDP), for which there are several studies listing expert-selected confounders that can serve as a ground truth. LLMs exhibit mediocre performance in identifying confounders in this setting, even though text about the ground truth is in their training data. Variables that experts identify as confounders are only slightly more likely to be labeled as confounders by LLMs compared to variables that experts consider non-confounders. Further, LLM judgment on confounder status is highly inconsistent across models, prompts, and irrelevant concerns like multiple-choice option ordering. LLMs do not yet have the ability to automate the reporting of causal links.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 80 likes.

Upgrade to Pro to view all of the tweets about this paper: