Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

CK-MPM: A Compact-Kernel Material Point Method (2412.10399v4)

Published 4 Dec 2024 in cs.GR and physics.comp-ph

Abstract: The Material Point Method (MPM) has become a cornerstone of physics-based simulation, widely used in geomechanics and computer graphics for modeling phenomena such as granular flows, viscoelasticity, fracture mechanics, etc. Despite its versatility, the original MPM suffers from cell-crossing instabilities caused by discontinuities in particle-grid transfer kernels. Existing solutions mostly mitigate these issues by adopting smoother shape functions, but at the cost of increased numerical diffusion and computational overhead due to larger kernel support. In this paper, we propose a novel C2-continuous compact kernel for MPM that achieves a unique balance in terms of stability, accuracy, and computational efficiency. Our method integrates seamlessly with Affine Particle-In-Cell (APIC) and Moving Least Squares (MLS) MPM, while only doubling the number of grid nodes associated with each particle compared to linear kernels. At its core is an innovative dual-grid framework, which associates particles with grid nodes exclusively within the cells they occupy on two staggered grids, ensuring consistent and stable force computations. We demonstrate that our method can be conveniently implemented using a domain-specific language, Taichi, or based on open-source GPU MPM frameworks, achieving faster runtime and less numerical diffusion compared to quadratic B-spline MPM. Comprehensive validation through unit tests, comparative studies, and stress tests demonstrates the efficacy of our approach in conserving both linear and angular momentum, handling stiff materials, and scaling efficiently for large-scale simulations. Our results highlight the transformative potential of compact, high-order kernels in advancing MPM's capabilities for stable, accurate, and high-performance simulations.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube