Error bounds for full space-time splitting discretizations of semi-linear SPDEs -- with a focus on dG domain decompositions (2412.10125v1)
Abstract: We consider a fully discretized numerical scheme for parabolic stochastic partial differential equations with multiplicative noise. Our abstract framework can be applied to formulate a non-iterative domain decomposition approach. Such methods can help to parallelize the code and therefore lead to a more efficient implementation. The domain decomposition is integrated through the Douglas-Rachford splitting scheme, where one split operator acts on one part of the domain. For an efficient space discretization of the underlying equation, we chose the discontinuous Galerkin method as this suits the parallelization strategy well. For this fully discretized scheme, we provide a strong space-time convergence result. We conclude the manuscript with numerical experiments validating our theoretical findings.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.