Papers
Topics
Authors
Recent
2000 character limit reached

Toward Foundation Model for Multivariate Wearable Sensing of Physiological Signals (2412.09758v2)

Published 12 Dec 2024 in cs.LG and eess.SP

Abstract: Time-series foundation models excel at tasks like forecasting across diverse data types by leveraging informative waveform representations. Wearable sensing data, however, pose unique challenges due to their variability in patterns and frequency bands, especially for healthcare-related outcomes. The main obstacle lies in crafting generalizable representations that adapt efficiently across heterogeneous sensing configurations and applications. To address this, we propose NormWear, the first multi-modal and ubiquitous foundation model designed to extract generalized and informative representations from wearable sensing data. Specifically, we design a channel-aware attention mechanism with a shared special liaison [CLS] token to detect signal patterns in both intra-sensor and inter-sensors. This helps the model to extract more meaningful information considering both time series themselves and the relationships between input sensors. This helps the model to be widely compatible with various sensors settings. NormWear is pretrained on a diverse set of physiological signals, including PPG, ECG, EEG, GSR, and IMU, from various public datasets. Our model shows exceptional generalizability across 11 public wearable sensing datasets, spanning 18 applications in mental health, body state inference, vital sign estimation, and disease risk evaluation. It consistently outperforms competitive baselines under zero-shot, partial-shot, and full-shot settings, indicating broad applicability in real-world health applications.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.