Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Bench2Drive-R: Turning Real World Data into Reactive Closed-Loop Autonomous Driving Benchmark by Generative Model (2412.09647v1)

Published 11 Dec 2024 in cs.RO, cs.CV, and cs.LG

Abstract: For end-to-end autonomous driving (E2E-AD), the evaluation system remains an open problem. Existing closed-loop evaluation protocols usually rely on simulators like CARLA being less realistic; while NAVSIM using real-world vision data, yet is limited to fixed planning trajectories in short horizon and assumes other agents are not reactive. We introduce Bench2Drive-R, a generative framework that enables reactive closed-loop evaluation. Unlike existing video generative models for AD, the proposed designs are tailored for interactive simulation, where sensor rendering and behavior rollout are decoupled by applying a separate behavioral controller to simulate the reactions of surrounding agents. As a result, the renderer could focus on image fidelity, control adherence, and spatial-temporal coherence. For temporal consistency, due to the step-wise interaction nature of simulation, we design a noise modulating temporal encoder with Gaussian blurring to encourage long-horizon autoregressive rollout of image sequences without deteriorating distribution shifts. For spatial consistency, a retrieval mechanism, which takes the spatially nearest images as references, is introduced to to ensure scene-level rendering fidelity during the generation process. The spatial relations between target and reference are explicitly modeled with 3D relative position encodings and the potential over-reliance of reference images is mitigated with hierarchical sampling and classifier-free guidance. We compare the generation quality of Bench2Drive-R with existing generative models and achieve state-of-the-art performance. We further integrate Bench2Drive-R into nuPlan and evaluate the generative qualities with closed-loop simulation results. We will open source our code.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.