Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Precise Asymptotics and Refined Regret of Variance-Aware UCB (2412.08843v2)

Published 12 Dec 2024 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: In this paper, we study the behavior of the Upper Confidence Bound-Variance (UCB-V) algorithm for the Multi-Armed Bandit (MAB) problems, a variant of the canonical Upper Confidence Bound (UCB) algorithm that incorporates variance estimates into its decision-making process. More precisely, we provide an asymptotic characterization of the arm-pulling rates for UCB-V, extending recent results for the canonical UCB in Kalvit and Zeevi (2021) and Khamaru and Zhang (2024). In an interesting contrast to the canonical UCB, our analysis reveals that the behavior of UCB-V can exhibit instability, meaning that the arm-pulling rates may not always be asymptotically deterministic. Besides the asymptotic characterization, we also provide non-asymptotic bounds for the arm-pulling rates in the high probability regime, offering insights into the regret analysis. As an application of this high probability result, we establish that UCB-V can achieve a more refined regret bound, previously unknown even for more complicate and advanced variance-aware online decision-making algorithms.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube