Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Grothendieck Graph Neural Networks Framework: An Algebraic Platform for Crafting Topology-Aware GNNs (2412.08835v1)

Published 12 Dec 2024 in cs.LG

Abstract: Due to the structural limitations of Graph Neural Networks (GNNs), in particular with respect to conventional neighborhoods, alternative aggregation strategies have recently been investigated. This paper investigates graph structure in message passing, aimed to incorporate topological characteristics. While the simplicity of neighborhoods remains alluring, we propose a novel perspective by introducing the concept of 'cover' as a generalization of neighborhoods. We design the Grothendieck Graph Neural Networks (GGNN) framework, offering an algebraic platform for creating and refining diverse covers for graphs. This framework translates covers into matrix forms, such as the adjacency matrix, expanding the scope of designing GNN models based on desired message-passing strategies. Leveraging algebraic tools, GGNN facilitates the creation of models that outperform traditional approaches. Based on the GGNN framework, we propose Sieve Neural Networks (SNN), a new GNN model that leverages the notion of sieves from category theory. SNN demonstrates outstanding performance in experiments, particularly on benchmarks designed to test the expressivity of GNNs, and exemplifies the versatility of GGNN in generating novel architectures.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: