Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

SmolTulu: Higher Learning Rate to Batch Size Ratios Can Lead to Better Reasoning in SLMs (2412.08347v1)

Published 11 Dec 2024 in cs.CL and cs.AI

Abstract: We present SmolTulu-1.7b-Instruct, referenced in this report as SmolTulu-DPO-1130, an instruction-tuned LLM that adapts AllenAI's Tulu 3 post-training pipeline to enhance Huggingface's SmoLLM2-1.7B base model. Through comprehensive empirical analysis using a 135M parameter model, we demonstrate that the relationship between learning rate and batch size significantly impacts model performance in a task-dependent manner. Our findings reveal a clear split: reasoning tasks like ARC and GSM8K benefit from higher learning rate to batch size ratios, while pattern recognition tasks such as HellaSwag and IFEval show optimal performance with lower ratios. These insights informed the development of SmolTulu, which achieves state-of-the-art performance among sub-2B parameter models on instruction following, scoring 67.7% on IFEval ($\Delta$11%), and mathematical reasoning with 51.6% on GSM8K ($\Delta$3.4%), with an alternate version achieving scoring 57.1% on ARC ($\Delta5.4%$). We release our model, training recipes, and ablation studies to facilitate further research in efficient model alignment, demonstrating that careful adaptation of optimization dynamics can help bridge the capability gap between small and LLMs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube