Papers
Topics
Authors
Recent
2000 character limit reached

DocSum: Domain-Adaptive Pre-training for Document Abstractive Summarization (2412.08196v1)

Published 11 Dec 2024 in cs.CL and cs.CV

Abstract: Abstractive summarization has made significant strides in condensing and rephrasing large volumes of text into coherent summaries. However, summarizing administrative documents presents unique challenges due to domain-specific terminology, OCR-generated errors, and the scarcity of annotated datasets for model fine-tuning. Existing models often struggle to adapt to the intricate structure and specialized content of such documents. To address these limitations, we introduce DocSum, a domain-adaptive abstractive summarization framework tailored for administrative documents. Leveraging pre-training on OCR-transcribed text and fine-tuning with an innovative integration of question-answer pairs, DocSum enhances summary accuracy and relevance. This approach tackles the complexities inherent in administrative content, ensuring outputs that align with real-world business needs. To evaluate its capabilities, we define a novel downstream task setting-Document Abstractive Summarization-which reflects the practical requirements of business and organizational settings. Comprehensive experiments demonstrate DocSum's effectiveness in producing high-quality summaries, showcasing its potential to improve decision-making and operational workflows across the public and private sectors.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.