Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Collaborative Hybrid Propagator for Temporal Misalignment in Audio-Visual Segmentation (2412.08161v1)

Published 11 Dec 2024 in cs.CV, cs.LG, cs.MM, cs.SD, and eess.AS

Abstract: Audio-visual video segmentation (AVVS) aims to generate pixel-level maps of sound-producing objects that accurately align with the corresponding audio. However, existing methods often face temporal misalignment, where audio cues and segmentation results are not temporally coordinated. Audio provides two critical pieces of information: i) target object-level details and ii) the timing of when objects start and stop producing sounds. Current methods focus more on object-level information but neglect the boundaries of audio semantic changes, leading to temporal misalignment. To address this issue, we propose a Collaborative Hybrid Propagator Framework~(Co-Prop). This framework includes two main steps: Preliminary Audio Boundary Anchoring and Frame-by-Frame Audio-Insert Propagation. To Anchor the audio boundary, we employ retrieval-assist prompts with Qwen LLMs to identify control points of audio semantic changes. These control points split the audio into semantically consistent audio portions. After obtaining the control point lists, we propose the Audio Insertion Propagator to process each audio portion using a frame-by-frame audio insertion propagation and matching approach. We curated a compact dataset comprising diverse source conversion cases and devised a metric to assess alignment rates. Compared to traditional simultaneous processing methods, our approach reduces memory requirements and facilitates frame alignment. Experimental results demonstrate the effectiveness of our approach across three datasets and two backbones. Furthermore, our method can be integrated with existing AVVS approaches, offering plug-and-play functionality to enhance their performance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.