Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On Random Simplex Picking Beyond the Blashke Problem (2412.07952v1)

Published 10 Dec 2024 in math.MG and math.PR

Abstract: New selected values of odd random simplex volumetric moments (moments of the volume of a random simplex picked from a given body) are derived in an exact form in various bodies in dimensions three, four, five, and six. In three dimensions, the well-known Efron's formula was used by Buchta & Reitzner and Zinani to deduce the mean volume of a random tetrahedron in a tetrahedron and a cube. However, for higher moments and/or in higher dimensions, the method fails. As it turned out, the same problem is also solvable using the Blashke-Petkantschin formula in Cartesian parametrisation in the form of the Canonical Section Integral (Base-height splitting). In our presentation, we show how to derive the older results mentioned above using our base-height splitting method and also touch on the essential steps of how the method translates to higher dimensions and for higher moments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: