2000 character limit reached
On the Krull dimension of rings of integer-valued rational functions (2412.07931v1)
Published 10 Dec 2024 in math.AC
Abstract: Let $D$ be an integral domain with quotient field $K$ and $E$ a subset of $K$. The \textit{ring of integer-valued rational functions on} $E$ is defined as $$\mathrm{int}_R(E,D):=\lbrace \varphi \in K(X);\; \varphi(E)\subseteq D\rbrace.$$ The main goal of this paper is to investigate the Krull dimension of the ring $\mathrm{int}_R(E,D).$ Particularly, we are interested in domains that are either Jaffard or PVDs. Interesting results are established with some illustrating examples.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.