Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Automatic Doubly Robust Forests (2412.07184v2)

Published 10 Dec 2024 in stat.ME, cs.LG, econ.EM, math.ST, and stat.TH

Abstract: This paper proposes the automatic Doubly Robust Random Forest (DRRF) algorithm for estimating the conditional expectation of a moment functional in the presence of high-dimensional nuisance functions. DRRF extends the automatic debiasing framework based on the Riesz representer to the conditional setting and enables nonparametric, forest-based estimation (Athey et al., 2019; Oprescu et al., 2019). In contrast to existing methods, DRRF does not require prior knowledge of the form of the debiasing term or impose restrictive parametric or semi-parametric assumptions on the target quantity. Additionally, it is computationally efficient in making predictions at multiple query points. We establish consistency and asymptotic normality results for the DRRF estimator under general assumptions, allowing for the construction of valid confidence intervals. Through extensive simulations in heterogeneous treatment effect (HTE) estimation, we demonstrate the superior performance of DRRF over benchmark approaches in terms of estimation accuracy, robustness, and computational efficiency.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube