Papers
Topics
Authors
Recent
2000 character limit reached

Harmonic Mean Density Fusion in Distributed Tracking: Performance and Comparison (2412.06725v1)

Published 9 Dec 2024 in eess.SP, cs.SY, and eess.SY

Abstract: A distributed sensor fusion architecture is preferred in a real target-tracking scenario as compared to a centralized scheme since it provides many practical advantages in terms of computation load, communication bandwidth, fault-tolerance, and scalability. In multi-sensor target-tracking literature, such systems are better known by the pseudonym - track fusion, since processed tracks are fused instead of raw measurements. A fundamental problem, however, in such systems is the presence of unknown correlations between the tracks, which renders a standard Kalman filter (naive fusion) useless. A widely accepted solution is covariance intersection (CI) which provides near-optimal estimates but at the cost of a conservative covariance. Thus, the estimates are pessimistic, which might result in a delayed error convergence. Also, fusion of Gaussian mixture densities is an active area of research where standard methods of track fusion cannot be used. In this article, harmonic mean density (HMD) based fusion is discussed, which seems to handle both of these issues. We present insights on HMD fusion and prove that the method is a result of minimizing average Pearson divergence. This article also provides an alternative and easy implementation based on an importance-sampling-like method without the requirement of a proposal density. Similarity of HMD with inverse covariance intersection is an interesting find, and has been discussed in detail. Results based on a real-world multi-target multi-sensor scenario show that the proposed approach converges quickly than existing track fusion algorithms while also being consistent, as evident from the normalized estimation-error squared (NEES) plots.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.