Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Universal chain rules from entropic triangle inequalities (2412.06723v1)

Published 9 Dec 2024 in quant-ph

Abstract: The von Neumann entropy of an $n$-partite system $A_1n$ given a system $B$ can be written as the sum of the von Neumann entropies of the individual subsystems $A_k$ given $A_1{k-1}$ and $B$. While it is known that such a chain rule does not hold for the smooth min-entropy, we prove a counterpart of this for a variant of the smooth min-entropy, which is equal to the conventional smooth min-entropy up to a constant. This enables us to lower bound the smooth min-entropy of an $n$-partite system in terms of, roughly speaking, equally strong entropies of the individual subsystems. We call this a universal chain rule for the smooth min-entropy, since it is applicable for all values of $n$. Using duality, we also derive a similar relation for the smooth max-entropy. Our proof utilises the entropic triangle inequalities for analysing approximation chains. Additionally, we also prove an approximate version of the entropy accumulation theorem, which significantly relaxes the conditions required on the state to bound its smooth min-entropy. In particular, it does not require the state to be produced through a sequential process like previous entropy accumulation type bounds. In our upcoming companion paper, we use it to prove the security of parallel device independent quantum key distribution.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.