Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 208 tok/s Pro
2000 character limit reached

When Vision Models Meet Parameter Efficient Look-Aside Adapters Without Large-Scale Audio Pretraining (2412.05951v1)

Published 8 Dec 2024 in cs.SD, cs.CV, cs.LG, and eess.AS

Abstract: Recent studies show that pretrained vision models can boost performance in audio downstream tasks. To enhance the performance further, an additional pretraining stage with large scale audio data is typically required to infuse audio specific knowledge into the vision model. However, such approaches require extensive audio data and a carefully designed objective function. In this work, we propose bypassing the pretraining stage by directly fine-tuning the vision model with our Look Aside Adapter (LoAA) designed for efficient audio understanding. Audio spectrum data is represented across two heterogeneous dimensions time and frequency and we refine adapters to facilitate interactions between tokens across these dimensions. Our experiments demonstrate that our adapters allow vision models to reach or surpass the performance of pretrained audio models in various audio and speech tasks, offering a resource efficient and effective solution for leveraging vision models in audio applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube