Papers
Topics
Authors
Recent
2000 character limit reached

ORKG ASK: a Neuro-symbolic Scholarly Search and Exploration System

Published 6 Dec 2024 in cs.DL | (2412.04977v1)

Abstract: Purpose: Finding scholarly articles is a time-consuming and cumbersome activity, yet crucial for conducting science. Due to the growing number of scholarly articles, new scholarly search systems are needed to effectively assist researchers in finding relevant literature. Methodology: We take a neuro-symbolic approach to scholarly search and exploration by leveraging state-of-the-art components, including semantic search, LLMs, and Knowledge Graphs (KGs). The semantic search component composes a set of relevant articles. From this set of articles, information is extracted and presented to the user. Findings: The presented system, called ORKG ASK (Assistant for Scientific Knowledge), provides a production-ready search and exploration system. Our preliminary evaluation indicates that our proposed approach is indeed suitable for the task of scholarly information retrieval. Value: With ORKG ASK, we present a next-generation scholarly search and exploration system and make it available online. Additionally, the system components are open source with a permissive license.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.