Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 43 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 225 tok/s Pro
2000 character limit reached

PETapter: Leveraging PET-style classification heads for modular few-shot parameter-efficient fine-tuning (2412.04975v1)

Published 6 Dec 2024 in cs.CL

Abstract: Few-shot learning and parameter-efficient fine-tuning (PEFT) are crucial to overcome the challenges of data scarcity and ever growing LLM sizes. This applies in particular to specialized scientific domains, where researchers might lack expertise and resources to fine-tune high-performing LLMs to nuanced tasks. We propose PETapter, a novel method that effectively combines PEFT methods with PET-style classification heads to boost few-shot learning capabilities without the significant computational overhead typically associated with full model training. We validate our approach on three established NLP benchmark datasets and one real-world dataset from communication research. We show that PETapter not only achieves comparable performance to full few-shot fine-tuning using pattern-exploiting training (PET), but also provides greater reliability and higher parameter efficiency while enabling higher modularity and easy sharing of the trained modules, which enables more researchers to utilize high-performing NLP-methods in their research.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.