Machine Checked Proofs and Programs in Algebraic Combinatorics (2412.04864v1)
Abstract: We present a library of formalized results around symmetric functions and the character theory of symmetric groups. Written in Coq/Rocq and based on the Mathematical Components library, it covers a large part of the contents of a graduate level textbook in the field. The flagship result is a proof of the Littlewood-Richardson rule, which computes the structure constants of the algebra of symmetric function in the schur basis which are integer numbers appearing in various fields of mathematics, and which has a long history of wrong proofs. A specific feature of algebraic combinatorics is the constant interplay between algorithms and algebraic constructions: algorithms are not only in computations, but also are key ingredients in definitions and proofs. As such, the proof of the Littlewood-Richardson rule deeply relies on the understanding of the execution of the Robinson-Schensted algorithm. Many results in this library are effective and actually used in computer algebra systems, and we discuss their certified implementation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.