Papers
Topics
Authors
Recent
2000 character limit reached

Adaptive Optimization for Enhanced Efficiency in Large-Scale Language Model Training (2412.04718v1)

Published 6 Dec 2024 in cs.AI

Abstract: With the rapid development of natural language processing technology, large-scale LLMs (LLM) have achieved remarkable results in a variety of tasks. However, how to effectively train these huge models and improve their performance and computational efficiency remains an important challenge. This paper proposes an improved method based on adaptive optimization algorithm, aiming to improve the training efficiency and final performance of LLM. Through comparative experiments on the SQuAD and GLUE data sets, the experimental results show that compared with traditional optimization algorithms (such as SGD, Momentum, AdaGrad, RMSProp and Adam), the adaptive optimization algorithm we proposed has better accuracy and F1 score. Both have achieved significant improvements, especially showed stronger training capabilities when processed large-scale texts and complex tasks. The research results verify the advantages of adaptive optimization algorithms in large-scale LLM training and provide new ideas and directions for future optimization methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com