Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Towards Performance-Aware Allocation for Accelerated Machine Learning on GPU-SSD Systems (2412.04569v2)

Published 5 Dec 2024 in cs.AR

Abstract: The exponential growth of data-intensive machine learning workloads has exposed significant limitations in conventional GPU-accelerated systems, especially when processing datasets exceeding GPU DRAM capacity. We propose MQMS, an augmented in-storage GPU architecture and simulator that is aware of internal SSD states and operations, enabling intelligent scheduling and address allocation to overcome performance bottlenecks caused by CPU-mediated data access patterns. MQMS introduces dynamic address allocation to maximize internal parallelism and fine-grained address mapping to efficiently handle small I/O requests without incurring read-modify-write overheads. Through extensive evaluations on workloads ranging from LLM inference to classical machine learning algorithms, MQMS demonstrates orders-of-magnitude improvements in I/O request throughput, device response time, and simulation end time compared to existing simulators.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.