Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

WACANA: A Concolic Analyzer for Detecting On-chain Data Vulnerabilities in WASM Smart Contracts (2412.03946v1)

Published 5 Dec 2024 in cs.CR and cs.SE

Abstract: WebAssembly (WASM) has emerged as a crucial technology in smart contract development for several blockchain platforms. Unfortunately, since their introduction, WASM smart contracts have been subject to several security incidents caused by contract vulnerabilities, resulting in substantial economic losses. However, existing tools for detecting WASM contract vulnerabilities have accuracy limitations, one of the main reasons being the coarse-grained emulation of the on-chain data APIs. In this paper, we introduce WACANA, an analyzer for WASM contracts that accurately detects vulnerabilities through fine-grained emulation of on-chain data APIs. WACANA precisely simulates both the structure of on-chain data tables and their corresponding API functions, and integrates concrete and symbolic execution within a coverage-guided loop to balance accuracy and efficiency. Evaluations on a vulnerability dataset of 133 contracts show WACANA outperforming state-of-the-art tools in accuracy. Further validation on 5,602 real-world contracts confirms WACANA's practical effectiveness.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.