Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Online Submodular Assignment Problem (2412.03826v2)

Published 5 Dec 2024 in cs.DS

Abstract: Online resource allocation is a rich and varied field. One of the most well-known problems in this area is online bipartite matching, introduced in 1990 by Karp, Vazirani, and Vazirani [KVV90]. Since then, many variants have been studied, including AdWords, the generalized assignment problem (GAP), and online submodular welfare maximization. In this paper, we introduce a generalization of GAP which we call the submodular assignment problem (SAP). This generalization captures many online assignment problems, including all classical online bipartite matching problems as well as broader online combinatorial optimization problems such as online arboricity, flow scheduling, and laminar restricted allocations. We present a fractional algorithm for online SAP that is (1-1/e)-competitive. Additionally, we study several integral special cases of the problem. In particular, we provide a (1-1/e-epsilon)-competitive integral algorithm under a small-bids assumption, and a (1-1/e)-competitive integral algorithm for online submodular welfare maximization where the utility functions are given by rank functions of matroids. The key new ingredient for our results is the construction and structural analysis of a "water level" vector for polymatroids, which allows us to generalize the classic water-filling paradigm used in online matching problems. This construction reveals connections to submodular utility allocation markets and principal partition sequences of matroids.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.