Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

UrbanGS: Semantic-Guided Gaussian Splatting for Urban Scene Reconstruction (2412.03473v2)

Published 4 Dec 2024 in cs.CV

Abstract: Reconstructing urban scenes is challenging due to their complex geometries and the presence of potentially dynamic objects. 3D Gaussian Splatting (3DGS)-based methods have shown strong performance, but existing approaches often incorporate manual 3D annotations to improve dynamic object modeling, which is impractical due to high labeling costs. Some methods leverage 4D Gaussian Splatting (4DGS) to represent the entire scene, but they treat static and dynamic objects uniformly, leading to unnecessary updates for static elements and ultimately degrading reconstruction quality. To address these issues, we propose UrbanGS, which leverages 2D semantic maps and an existing dynamic Gaussian approach to distinguish static objects from the scene, enabling separate processing of definite static and potentially dynamic elements. Specifically, for definite static regions, we enforce global consistency to prevent unintended changes in dynamic Gaussian and introduce a K-nearest neighbor (KNN)-based regularization to improve local coherence on low-textured ground surfaces. Notably, for potentially dynamic objects, we aggregate temporal information using learnable time embeddings, allowing each Gaussian to model deformations over time. Extensive experiments on real-world datasets demonstrate that our approach outperforms state-of-the-art methods in reconstruction quality and efficiency, accurately preserving static content while capturing dynamic elements.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.