Data-Driven LQR with Finite-Time Experiments via Extremum-Seeking Policy Iteration
Abstract: In this paper, we address Linear Quadratic Regulator (LQR) problems through a novel iterative algorithm named EXtremum-seeking Policy iteration LQR (EXP-LQR). The peculiarity of EXP-LQR is that it only needs access to a truncated approximation of the infinite-horizon cost associated to a given policy. Hence, EXP-LQR does not need the direct knowledge of neither the system and cost matrices. In particular, at each iteration, EXP-LQR refines the maintained policy using a truncated LQR cost retrieved by performing finite-time virtual or real experiments in which a perturbed version of the current policy is employed. Such a perturbation is done according to an extremum-seeking mechanism and makes the overall algorithm a time-varying nonlinear system. By using a Lyapunov-based approach exploiting averaging theory, we show that EXP-LQR exponentially converges to an arbitrarily small neighborhood of the optimal gain matrix. We corroborate the theoretical results with numerical simulations involving the control of an induction motor.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.