Papers
Topics
Authors
Recent
2000 character limit reached

Fast maximal clique enumeration in weighted temporal networks

Published 3 Dec 2024 in cs.SI | (2412.02434v1)

Abstract: Cliques, groups of fully connected nodes in a network, are often used to study group dynamics of complex systems. In real-world settings, group dynamics often have a temporal component. For example, conference attendees moving from one group conversation to another. Recently, maximal clique enumeration methods have been introduced that add temporal (and frequency) constraints, to account for such phenomena. These methods enumerate so called (delta,gamma)-maximal cliques. In this work, we introduce an efficient (delta,gamma)-maximal clique enumeration algorithm, that extends gamma from a frequency constraint to a more versatile weighting constraint. Additionally, we introduce a definition of (delta,gamma)-cliques, that resolves a problem of existing definitions in the temporal domain. Our approach, which was inspired by a state-of-the-art two-phase approach, introduces a more efficient initial (stretching) phase. Specifically, we reduce the time complexity of this phase to be linear with respect to the number of temporal edges. Furthermore, we introduce a new approach to the second (bulking) phase, which allows us to efficiently prune search tree branches. Consequently, in experiments we observe speed-ups, often by several order of magnitude, on various (large) real-world datasets. Our algorithm vastly outperforms the existing state-of-the-art methods for temporal networks, while also extending applicability to weighted networks.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.