Papers
Topics
Authors
Recent
2000 character limit reached

Comparative Performance of Machine Learning Algorithms for Early Genetic Disorder and Subclass Classification (2412.02189v1)

Published 3 Dec 2024 in cs.AI

Abstract: A great deal of effort has been devoted to discovering a particular genetic disorder, but its classification across a broad spectrum of disorder classes and types remains elusive. Early diagnosis of genetic disorders enables timely interventions and improves outcomes. This study implements machine learning models using basic clinical indicators measurable at birth or infancy to enable diagnosis in preliminary life stages. Supervised learning algorithms were implemented on a dataset of 22083 instances with 42 features like family history, newborn metrics, and basic lab tests. Extensive hyperparameter tuning, feature engineering, and selection were undertaken. Two multi-class classifiers were developed: one for predicting disorder classes (mitochondrial, multifactorial, and single-gene) and one for subtypes (9 disorders). Performance was evaluated using accuracy, precision, recall, and the F1-score. The CatBoost classifier achieved the highest accuracy of 77% for predicting genetic disorder classes. For subtypes, SVM attained a maximum accuracy of 80%. The study demonstrates the feasibility of using basic clinical data in machine learning models for early categorization and diagnosis across various genetic disorders. Applying ML with basic clinical indicators can enable timely interventions once validated on larger datasets. It is necessary to conduct further studies to improve model performance on this dataset.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.