Papers
Topics
Authors
Recent
2000 character limit reached

Comparative Analysis of Black-Box and White-Box Machine Learning Model in Phishing Detection (2412.02084v1)

Published 3 Dec 2024 in cs.CR and cs.AI

Abstract: Background: Explainability in phishing detection model can support a further solution of phishing attack mitigation by increasing trust and understanding how phishing can be detected. Objective: The aims of this study to determine and best recommendation to apply an approach which has several components with abilities to fulfil the critical needs Methods: A methodology starting with analyzing both black-box and white-box models to get the pros and cons specifically in phishing detection. The conclusion of the analysis will be validated by experiment using a set of well-known algorithms and public phishing datasets. Experimental metrics covers 3 measurements such as predictive accuracy and explainability metrics. Conclusion: Both models are comparable in terms of interpretability and consistency, with room for improvement in diverse datasets. EBM as an example of white-box model is generally better suited for applications requiring explainability and actionable insights. Finally, each model, white-box and black-box model has positive and negative aspects both for performance metric and for explainable metric. It is important to consider the objective of model usage.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.