Postnikov--Stanley polynomials are Lorentzian (2412.02051v2)
Abstract: Postnikov--Stanley polynomials $D_uw$ are a generalization of skew dual Schubert polynomials to the setting of arbitrary Weyl groups. We prove that Postnikov--Stanley polynomials are Lorentzian by showing that they are degree polynomials of Richardson varieties. Our result yields an interesting class of Lorentzian polynomials related to the geometry of Richardson varieties, generalizes the result that dual Schubert polynomials are Lorentzian (Huh--Matherne--M\'esz\'aros--St. Dizier 2022), and resolves the conjecture that Postnikov--Stanley polynomials have M-convex support (An--Tung--Zhang 2024).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.