Papers
Topics
Authors
Recent
2000 character limit reached

Rectified Flow For Structure Based Drug Design

Published 2 Dec 2024 in cs.LG and cs.CE | (2412.01174v1)

Abstract: Deep generative models have achieved tremendous success in structure-based drug design in recent years, especially for generating 3D ligand molecules that bind to specific protein pocket. Notably, diffusion models have transformed ligand generation by providing exceptional quality and creativity. However, traditional diffusion models are restricted by their conventional learning objectives, which limit their broader applicability. In this work, we propose a new framework FlowSBDD, which is based on rectified flow model, allows us to flexibly incorporate additional loss to optimize specific target and introduce additional condition either as an extra input condition or replacing the initial Gaussian distribution. Extensive experiments on CrossDocked2020 show that our approach could achieve state-of-the-art performance on generating high-affinity molecules while maintaining proper molecular properties without specifically designing binding site, with up to -8.50 Avg. Vina Dock score and 75.0% Diversity.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.