Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

New Examples of Abelian D4D2D0 Indices (2412.01149v2)

Published 2 Dec 2024 in hep-th

Abstract: We apply the methods of \cite{Alexandrov:2023zjb} to compute generating series of D4D2D0 indices with a single unit of D4 charge for several compact Calabi-Yau threefolds, assuming modularity of these indices. Our examples include a $\mathbb{Z}{7}$ quotient of R{\o}dland's pfaffian threefold, a $\mathbb{Z}{5}$ quotient of Hosono-Takagi's double quintic symmetroid threefold, the $\mathbb{Z}{3}$ quotient of the bicubic intersection in $\mathbb{P}{5}$, and the $\mathbb{Z}{5}$ quotient of the quintic hypersurface in $\mathbb{P}{4}$. For these examples we compute GV invariants to the highest genus that available boundary conditions make possible, and for the case of the quintic quotient alone this is sufficiently many GV invariants for us to make one nontrivial test of the modularity of these indices. As discovered in \cite {Alexandrov:2023zjb}, the assumption of modularity allows us to compute terms in the topological string genus expansion beyond those obtainable with previously understood boundary data. We also consider five multiparameter examples with $h{1,1}>1$, for which only a single index needs to be computed for modularity to fix the rest. We propose a modification of the formula in \cite{Alexandrov:2022pgd} that incorporates torsion to solve these models. Our new examples are only tractable because they have sufficiently small triple intersection and second Chern numbers, which happens because all of our examples are suitable quotient manifolds. In an appendix we discuss some aspects of quotient threefolds and their Wall data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube