Detecting Spoof Voices in Asian Non-Native Speech: An Indonesian and Thai Case Study (2412.01040v1)
Abstract: This study focuses on building effective spoofing countermeasures (CMs) for non-native speech, specifically targeting Indonesian and Thai speakers. We constructed a dataset comprising both native and non-native speech to facilitate our research. Three key features (MFCC, LFCC, and CQCC) were extracted from the speech data, and three classic machine learning-based classifiers (CatBoost, XGBoost, and GMM) were employed to develop robust spoofing detection systems using the native and combined (native and non-native) speech data. This resulted in two types of CMs: Native and Combined. The performance of these CMs was evaluated on both native and non-native speech datasets. Our findings reveal significant challenges faced by Native CM in handling non-native speech, highlighting the necessity for domain-specific solutions. The proposed method shows improved detection capabilities, demonstrating the importance of incorporating non-native speech data into the training process. This work lays the foundation for more effective spoofing detection systems in diverse linguistic contexts.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.