Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Study on Channel Effects for Synthetic Voice Spoofing Countermeasure Systems (2104.01320v3)

Published 3 Apr 2021 in eess.AS and cs.SD

Abstract: Spoofing countermeasure (CM) systems are critical in speaker verification; they aim to discern spoofing attacks from bona fide speech trials. In practice, however, acoustic condition variability in speech utterances may significantly degrade the performance of CM systems. In this paper, we conduct a cross-dataset study on several state-of-the-art CM systems and observe significant performance degradation compared with their single-dataset performance. Observing differences of average magnitude spectra of bona fide utterances across the datasets, we hypothesize that channel mismatch among these datasets is one important reason. We then verify it by demonstrating a similar degradation of CM systems trained on original but evaluated on channel-shifted data. Finally, we propose several channel robust strategies (data augmentation, multi-task learning, adversarial learning) for CM systems, and observe a significant performance improvement on cross-dataset experiments.

Citations (26)

Summary

We haven't generated a summary for this paper yet.