Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multiple Testing in Generalized Universal Inference

Published 1 Dec 2024 in stat.ME | (2412.01008v1)

Abstract: Compared to p-values, e-values provably guarantee safe, valid inference. If the goal is to test multiple hypotheses simultaneously, one can construct e-values for each individual test and then use the recently developed e-BH procedure to properly correct for multiplicity. Standard e-value constructions, however, require distributional assumptions that may not be justifiable. This paper demonstrates that the generalized universal inference framework can be used along with the e-BH procedure to control frequentist error rates in multiple testing when the quantities of interest are minimizers of risk functions, thereby avoiding the need for distributional assumptions. We demonstrate the validity and power of this approach via a simulation study, testing the significance of a predictor in quantile regression.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.