Papers
Topics
Authors
Recent
2000 character limit reached

Optimizing Quantum Embedding using Genetic Algorithm for QML Applications (2412.00286v1)

Published 29 Nov 2024 in quant-ph

Abstract: Quantum Embeddings (QE) are essential for loading classical data into quantum systems for Quantum Machine Learning (QML). The performance of QML algorithms depends on the type of QE and how features are mapped to qubits. Traditionally, the optimal embedding is found through optimization, but we propose framing it as a search problem instead. In this work, we use a Genetic Algorithm (GA) to search for the best feature-to-qubit mapping. Experiments on the MNIST and Tiny ImageNet datasets show that GA outperforms random feature-to-qubit mappings, achieving 0.33-3.33 (MNIST) and 0.5-3.36 (Tiny ImageNet) higher fitness scores, with up to 15% (MNIST) and 8.8% (Tiny ImageNet) reduced runtime. The GA approach is scalable with both dataset size and qubit count. Compared to existing methods like Quantum Embedding Kernel (QEK), QAOA-based embedding, and QRAC, GA shows improvements of 1.003X, 1.03X, and 1.06X, respectively.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.