Papers
Topics
Authors
Recent
2000 character limit reached

Creating Hierarchical Dispositions of Needs in an Agent

Published 23 Nov 2024 in cs.LG and cs.AI | (2412.00044v1)

Abstract: We present a novel method for learning hierarchical abstractions that prioritize competing objectives, leading to improved global expected rewards. Our approach employs a secondary rewarding agent with multiple scalar outputs, each associated with a distinct level of abstraction. The traditional agent then learns to maximize these outputs in a hierarchical manner, conditioning each level on the maximization of the preceding level. We derive an equation that orders these scalar values and the global reward by priority, inducing a hierarchy of needs that informs goal formation. Experimental results on the Pendulum v1 environment demonstrate superior performance compared to a baseline implementation.We achieved state of the art results.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.